
Building a Simulation Object Model of a Legacy Simulation

Larry R. Larimer
Graduate Student

Operations Research
Naval Postgraduate School

Monterey, CA

Arnold H. Buss
Adjunct Professor

Operations Research Department
Naval Postgraduate School

Monterey, CA

Leroy Jackson
Operations Research Analyst

United State Army
TRADOC Analysis Center—Monterey

Monterey, CA

KEYWORDS
SOM, HLA, ADS, OMDT, Janus, Legacy Simulation

ABSTRACT
The Department of Defense proclamation that all simulations comply with High Level Architecture (HLA)
standards prompted the U.S. Army Training and Doctrine Command (TRADOC) Analysis Center (TRAC) to
investigate the feasibility of including Janus in future HLA Federations. One of the Army’s most extensively used
models for training and analysis, Janus is an interactive, six-sided, closed, stochastic high-resolution simulation.
Fielded in 1978, Janus was coded in FORTRAN and, with its numerous revisions and enhancements, represents a
substantial investment for the U.S. Army. As a legacy model coded in a procedural language, there are
considerable challenges for Janus to meet HLA requirements. For example, the notion of an object model
definition was not envisioned during Janus development and is not intrinsic to its world view. In this paper we
will describe the methodology we are using to develop a Simulation Object Model (SOM) of Janus independent of
any existing federation of models. Our experience with this methodology will provide insight into the general
problem of producing an HLA-compliant SOM for a legacy simulation.

1.0 INTRODUCTION
In this paper we discuss the background of the Janus
simulation object model development process, the
Janus combat simulation, and Janus as an analysis
tool. We then describe the methodology used to create
a simulation object model of Janus detailing the
creation of the object class structure table, the
attribute/parameter table, the interaction table, the
SOM lexicon, the component structure table, the
associations table, and the object model metadata.
Finally, we highlight unresolved issues and
preliminary results.

We discuss target acquisition in detail. This topic
illustrates concerns which arise when identifying
object model attributes and interactions. To use a
simulation to for analysis, we define attributes and
interactions beyond those required for distributed
simulation interoperability.

2.0 BACKGROUND
In this section we discuss the project background and
give detailed information about the Janus simulation.

2.1 Janus SOM Development Project
The United States Army has used computer
simulations for years to train combat leaders and
perform analysis. Simulation models have helped to
determine optimal solutions to tactical, operational,
strategic, procurement, and numerous other complex
problems which otherwise would be difficult or
impossible to solve by other means.

With recent advances in computer technology, the
potential exists for the Army to significantly increase
the efficiency and productivity of soldiers and leaders
through the use of interactive virtual simulation
training events and multi-unit/location training
conducted through distributed simulations. Intense
interest in the use of Distributed Interactive

Simulations (DIS) for analysis and training have
resulted in the development of a standardization
program called the High Level Architecture (HLA).

The Defense Modeling and Simulation Office (DMSO)
sponsored the development of the HLA to standardize
the procedures for forming joint interoperating
simulations. In the HLA, a federate refers to an
individual simulation being considered for inclusion in
a group simulation. The resultant group simulation is
called a federation. The HLA facilitates simulation
interoperability through the Simulation Object Model
(SOM) and Federation Object Model (FOM). The idea
is that each simulation is described using the SOM,
and different simulations that are being considered for
inclusion in a federation are reviewed for compatibility
by comparing their individual SOMs. The SOM
represents the information that a simulation can
provide in a distributed simulation exercise. The result
of this Federation development process is another
object model called the FOM. The FOM represents a
“contract” among the individual members of the
federation that describes the public information that
may be provided by members during the simulation
execution. [2]

The Department of Defense has decreed that all DOD
simulations will comply with HLA standardization
requirements, or be replaced or excluded from
distributed simulations. All military organizations
that are proponents for individual simulations have
been directed by DOD to review their legacy
simulations over the next several months to determine
if the simulations can and should be made HLA
compliant

The Janus combat simulation has been used
extensively and successfully by many military
organizations. Janus represents a significant
investment for the U.S. Army and we would like to
provide a means for Janus to participate in future HLA
federations. However, Janus, as a legacy model,
provides some significant challenges in meeting the
HLA requirements. Janus is coded in a procedural
language with no well documented model definition.
The purpose of our research is to determine if Janus
can be described in an HLA compatible way in a
SOM. If we are successful, then the road is paved for
other legacy models to conform to HLA requirements
and to participate in future HLA federations.

2.2 Janus Simulation
Janus is a high resolution, interactive, six-sided,
closed, stochastic, ground combat simulation.

Lawrence Livermore National Laboratories developed
Janus to model nuclear effects, and the U.S. Army’s
Training and Doctrine Command (TRADOC)
Analysis Center(TRAC) at White Sands Missile Range
(TRAC-WSMR) is responsible for subsequent Janus
development. TRAC-WSMR modified Janus
extensively for Army high resolution combat model
requirements. Since its fielding in 1978, Janus has
been used extensively within the U.S. Army for both
training and analysis. Janus is also used for analysis
by RAND Corporation, the United States Marine
Corps, and by the armed forces of the United
Kingdom, Australia, France, and Germany.

Janus was coded in the procedural FORTRAN
programming language and since 1978 has undergone
numerous revisions (Janus 3.X/VMS Model Software
Design Manual). Major changes in Janus occurred
with version 4.0 which integrated terrain features
(roads, water, buildings, vegetation, other man-made
features) into the Janus environment. In addition to
depicting these features on the Janus graphical terrain,
algorithm adjustments in Janus code included
consideration for these terrain features in Janus search
and detection algorithms and probability of hit and
probability of kill calculations. The current version of
Janus is version 6.X which allows up to six different
forces with varying enmity for coalition warfare.
Previously, Janus allowed only two opposing forces.

Presently, the U.S. Army TRADOC Analysis Center at
Monterey (TRAC-Monterey) has developed a version
of Janus which is DIS compatible. This version of
Janus linked to DIS (JLINK) allows the integrity of
Janus to remain intact by enabling Janus to be DIS
compatible through an external software package.
This external software known as the World Modeler
translates the Janus protocols to DIS protocols and
vice versa as well as performs other functions for
Janus that are required by DIS architecture. Some of
these functions include dead reckoning, entity and
terrain reconciliation, and where necessary, turn
smoothing. Currently, JLINK can send and receive
entity state, fire, detonation, radar emissions, and with
specific DIS simulations obstacles, smoke, defilade
status, prepared positions, minefields, and the ability
to pause and resume an exercise during a run via DIS
protocols. It has successfully interacted with four
virtual and three constructive simulations which
include both SIMNET and ModSAF. Further
developments will enable JLINK to be more
interoperable with a larger array of DIS compatible
simulations with the eventual goal of releasing a DIS
compatible version of Janus (Janus 8.X). [9]

A distributed version of Janus (version 8.0) is under
development at TRAC-WSMR. The U.S. Army
TRADOC Analysis Center at Monterey (TRAC-
Monterey) has had significant success with a DIS
Janus project called JLINK. JLINK consists of a
slightly modified Janus simulation connected to a DIS
network through a network gateway application
known as World Modeler. Through the World
Modeller, Janus can interact with virtual and
constructive simulations that are DIS compliant. In
the JLINK form, Janus has been used for analysis of
anti-armor weapons technology and is being used to
allow National Guard units to train collectively as a
battalion without leaving their home stations.

Janus models entities at the individual soldier and
vehicle or aircraft level. Up to fifteen homogeneous
entities can be aggregated for display and control. In
Janus each member of an aggregation is fully
represented and thus functionally independent. Janus
can run in near real time if processing capabilities can
support the level of interaction in the specific scenario.
Janus will run slower than real time if too many
entities are interacting. This is primarily due to the
significant computing time required by the Janus
target acquisition algorithm. Janus can also run faster
than real time to expedite data generation. [4]

2.3 Janus as an Analytic Tool
 Historically, Janus has been a highly successful
analysis tool to research the effectiveness of new
military systems and tactical doctrines. Two
components are key for this success: a flexible
database and a powerful post processor.

The robust representation of systems in the database
allows the analyst to model new military systems and
proposed modifications to existing systems. Systems
are modeled as a combination of a platform, weapon
systems, and sensors. The database includes nearly
every ground vehicle combat system, dismounted
crew-served weapon system, and Army rotary wing
aircraft in the U.S. inventory and most of those used
by threat nations. Systems that are not in the database
can be easily created. Over 350 attributes are available
in the database for the analyst to model platforms,
weapon systems, sensors, projectiles, barriers, and
weather. Table 1 provides the reader with a more
detailed summary of the attributes in the Janus
database available to model entities. The current
version of Janus also represents limited types of fixed
wing aircraft and precision guided munitions.

The Janus Post Processor details entity interactions
that occur during the execution of each scenario.
Output reports include an artillery fire report, indirect
fire ammunition expenditure report, direct fire reports,
detection tables, coroner’s report, and killer/victim
scoreboard. Additionally, Janus provides a
supplementary tool, the Janus Analyst Workstation.
This tool has an “instant replay” capability for viewing
events graphically as they occurred during the scenario
run. The Janus Analyst Workstation also provides
statistical output that is synchronized with the scenario
run time to assist the analyst. [4]

3.0 METHODOLOGY
It is important to understand that we approach
modeling Janus as an HLA SOM from a theoretical
perspective. Unlike the SOMs built for the proto-
federations, we began this project with the Modeling
and Simulation Resource Repository (MSRR) in mind
rather than a specific target federation. We expected
the finished SOM to be a more general representation
of the simulation than some proto-federation SOMs.
We approached the problem with the idea that our
SOM would represent a conceptual mapping of Janus
from its procedural state to an object representation of
Janus, and with the intent that our work may be useful
to others who may be interesting in bringing a legacy
model into compliance with HLA.

We constructed of a detailed general object model for
Janus as an intermediate step in the HLA SOM
development. We found it more efficient to create this
conceptual model of Janus and then extract the HLA
SOM from it. The abstract classes in the object
oriented representation of the conceptual model
allowed us to identify classes to include in the SOM.
The detail of the object oriented representation
provided the attributes and interactions to complete the
SOM tables.

Janus is not coded in an object oriented language.
There are no declarations that allow us to easily
identify the conceptual “objects” that are a part of
Janus, nor is there a simple way to identify the
attributes of these objects. Never the less, careful
examination of the Janus commands, database,
interactions, and to a lesser extent Janus’ algorithms
allowed us to produce a working set of objects,
attributes and interactions. From this working set, we
are now crafting the Janus SOM. We did not restrict
our initial set of object attributes and interactions to
those suggested by the HLA SOM. We included many
terrain objects and private interactions in order to
capture a more complete Janus object model.

3.1 The Object Class Structure Table
We produced the initial Object Class Structure Table
using an organization chart format. This simple
format provided a clearly defined class hierarchy and
structure for later documentation in the HLA object
model template. See Figure 1 for platform class
hierarchy and Annex B for other class hierarchies.

The platform subtree of this class hierarchy is based
primarily on the Janus database which lists each
platform the user might introduce into a scenario.
Examples of these platforms include the M1A1
Abrams tank, the M2 Bradley Infantry Fighting
Vehicle, and the individual rifleman. Using these
platforms as the instantiable object classes in the class
hierarchy, we categorized these classes, and worked
upwards to produce a tentative hierarchy of abstract
classes until we reached the base platform superclass.

This platform class hierarchy was refined to produce
an alternative class hierarchy based on the army
concept of battlefield operating systems. This
illustrates the flexibility of the HLA simulation object
model to provide more than one appropriate model of
a simulation for military analysis and training. This
alternative class hierarchy is not presented here.

We created a terrain class hierarchy to produce a more
complete Janus object model even though this is not
required under the HLA. In order to portray the terrain

in Janus one must understand how the terrain and the
combat platforms interact through the Janus
algorithms. From the Janus graphical display, one can
discern five basic terrain components: elevation,
roads, buildings (towers, etc.), bodies of water, and
vegetation. In Janus, the surface is partitioned into a
gird with an elevation assigned to each grid cell. The
number and size of cells is determined and then fixed
within a particular database to support a scenario. The
normal cell size for Janus is 100 meters by 100 meters.
The elevation interacts with platform entities by
restricting the speed that they are allowed to move and
the Line of Sight (LOS) calculations in the Janus
search and detection algorithm. Rapidly changing
elevation reduces an entity’s movement speed due to
the slower movement rate required for steep terrain.
Roads and bodies of water interact with platform
entities in a similar manner.

The search and detection algorithm for Janus uses the
elevation of each intervening cell between the
searching entity and a potentially detected entity to
determine LOS. The roads, buildings, vegetation, and
water form a separate surface feature layer. The
surface feature layer also interacts with the battlefield
platform entities through the search and detection
algorithm. After determining that LOS between two
entities is not obstructed by terrain elevation, the
algorithm adjusts the probability of detection
appropriately based on the type of vegetation or
building.

Dismounted
Personnel

Generic Combat Arms

Wheeled

Artillery Engineer Air Defense

Towed Tracked

Ground
Vehicle

Attack Cargo/Utility Reconnaissance

Rotary Wing Fixed Wing

Aircraft

Platform
Superclass

Figure 1. Janus Platform Class Structure Hierarchy

Atmospheric conditions are classified as objects in
much the same manner as the terrain. Dust clouds,
smoke, and fog all affect the detection algorithm in the
same manner as vegetation and buildings. If the
detection algorithm identifies one of these objects in
the LOS between two objects, it degrades the

probability of detection an appropriate amount based
on the cloud thickness and type.

The barriers superclass was derived from the Janus
simulation run initial parameters screen which allows
the user to allocate barriers of six different types to
each force in a scenario. While these barrier objects

are depicted on the Janus graphical display
symbolically like the combat platforms, barriers are
not found in the Janus database.

Other object classes in the Janus object model are
sensor objects, weapon system objects, and ordnance
(ammunition) objects. These are components of the
platform class and were derived from the Janus
database.

3.2 Attribute/Parameter Table
The Attribute/Parameter Table is perhaps the most
difficult of the OMT components to construct for a
legacy model implemented in a procedural language.
In the Janus architecture, every platform entity carries
all the attributes available in the platform model. In
object oriented terms, for platform entities, Janus
really only has one object class--a superclass. Every
object is an instantiation of this superclass with only
certain attributes filled with values. The values of
these attributes define the type of object such as an A-
10 fixed-wing aircraft or an individual soldier with a
rifle.

Finding all these attributes requires detailed
knowledge of the Janus database, commands,
graphical display, and to a lesser degree, algorithms.
For example, Janus platform entities can be
suppressed. An entity that is suppressed has been
engaged with direct or indirect fire and is unable to
move or respond to the engagement for an amount of
time specified by the user during initialization. This
response is meant to model a situation where a soldier
is receiving enemy fire of such intensity or precision
that he is unable to move or return fire. However, there
is no attribute in the database or command in the
Janus command interface that alerts the user of this
capability. One must know the Janus User’s Manual in
detail in order to identify this suppression state
variable.

Another example is the location parameter. Each
entity carries a parameter that tracks its current
location (sometimes the last location prior to initiating
latest movement). Again, this parameter is not in the
database, commands available, or graphical display.
However, each entity must store its current location to
support search and detection calculations and
determine engagement outcomes. Tables 1 through 3
depict the basic platform entity attributes we identified
from the user’s manual and graphic display, command
interface, and the database.

User's Manual/Graphical Display
Status(Fully Operational/Casualty)
Suppressed
Entity Number
Smoke (VEES)
Passenger Status
Direction
Location
Destination
Speed
Table 1. Initial Platform Parameter List

Command Interface
Sprint
Hold Fire
Defilade
MOPP
Breach
Helicopter Pop-up
 Table 2. Command Interface

Every platform entity in Janus, from the individual
soldier to the M1 tank, is defined by values entered in
the attributes listed in Tables 1 and 2 above and in
Table 3 (see Annex B). However, in order to portray
Janus in a SOM, it makes more sense to build an
appropriate class hierarchy and include the attributes
only at the appropriate level in the class hierarchy just
as we would if we were redesigning an object oriented
Janus. In other words, only attributes which
correspond to the actual object will be listed for that
class. The challenge is to identify the appropriate
attributes for each level in the class hierarchy.

3.3 Interaction Table
There are three places in the Janus simulation to
identify interactions between objects. The first source
for interactions is the graphical interface. During a
Janus simulation run, many interactions are portrayed
graphically on the Janus battlefield screen.
Engagements are the primary interactions depicted
between platform entities. Between barriers and
platform entities, interactions result in the destruction
of the platform entity, or the halting of the platform
entity’s movement. Terrain interacts with platform
entities by slowing the entity’s movement as the
elevation becomes steeper. This terrain/platform
interaction is not depicted as explicitly as other
interactions on the screen. One must follow an entity
closely to see that its speed is slowing, or check the
entity’s speed using a status check option available in
the Janus command interface.

The second source for interactions is the Janus
command interface. Platform entities can be directed

to mount onto another platform entity or to dismount
from another platform entity. Also, the user can direct
a resupply platform to transload supplies to a combat
platform. The third source for interactions is the
Janus’ algorithms. A review of Janus’ algorithms
reveals the interactions between the atmosphere class
object and the terrain class object with the search and
detection capability of a platform entity. Table 4
indicates the interactions in Janus with the method of
identification annotated.

Platform vs. Platform
Engage with Direct Fire (Graphics Screen)
Mount on Platform (Command Interface)
Dismount from Platform (Command Interface)
Resupply Combat Platform (Command Interface)
Detect Platform (Graphics Screen/Algorithm)
Barrier vs. Platform
Destroy Platform (Graphics Screen)
Halt Platform Movement(Graphics Screen)
Atmosphere vs. Platform
Disrupt Search and Detect (Algorithm)
Terrain vs. Platform
Disrupt Movement (Graphics Screen)
Disrupt Search and Detect (Algorithm)
Barrier vs. Atmosphere
Create Smoke Cloud (Algorithm/Graphics Screen)
Platform
Engage with Indirect Fire (Command Interface)

 Table 4. Interactions

Since the interactions are already identified, that part
of the table is complete. The next step is listing the
initiating and receiving classes. Some of these
associations are easily resolved. For example in every
case, a smoke pot object interacts with the atmosphere
by creating a smoke cloud object. In other cases, the
association is less well defined. The engage interaction
between platform objects can be turned on or off by the
Janus user. An M1 Abrams tank modeled by Janus
must be specifically directed to engage other objects in
the database by platform type (BMP, BTR-60, T-80
Tank). Therefore, the engage platform interaction
reflected in the interaction table portrays engagement
interactions that Janus is capable of initiating, sensing,
or reacting to rather than what is allowed during any
specific Janus scenario run. [5]

The attributes associated with Janus interactions can
be identified in some cases by inspection (i.e.
Alive/Dead Status for a platform that has been
engaged). Other attributes are more difficult to identify
and are found in the algorithms or in the database. A
good example is the smoke cloud interaction with a
platform object’s target acquisition capability. A
particular smoke cloud object provides a transmittance
factor to the target acquisition algorithm. This

transmittance factor is a parameter of the smoke cloud
object expressed as a real number between 0 and 1.
The thermal or optical signature of the potentially
detected object is multiplied by the transmission factor
resulting in a smaller signature value received by the
observing object. The result of this interaction is a
decrease in the probability that the observing object
will detect the target object. [1,8]

3.4 SOM Lexicon
The OMT Lexicon required research into the
definitions of object parameters and attributes. Most
of this information was found in the Janus Database
Manager’s Manual, Janus User’s Manual, or by
inspection. Some cases such as the transmission factor
parameter in the atmosphere class of objects required a
detailed inspection of the target acquisition algorithm.
We have not yet examined other SOM lexicons.

3.5 Component Structure Table
The component structure table followed directly from
the object class structure table. Although not portrayed
clearly in the Janus database, each platform has three
sensor objects and zero to fifteen weapon system
objects. If the platform contains a weapon system
object, it necessarily must have appropriate ordnance
objects. We considered ordnance objects a component
of the platform rather than the weapon system because
we felt that the type and quantity of ordnance is more
closely associated with the platform than with the
weapon system. Different platforms may carry the
same weapon system but different types or quantities
of ordnance objects. The Janus database allows each
platform entity to carry any number of ordnance
objects (limited only by user discretion).

3.6 Associations Table
We have identified two primary associations in Janus.
They are the terrain/platform association and the
weapon system/ordnance association.

All platform entities are associated with the terrain
elevation object. As a platform moves across the
terrain, the platform updates the elevation component
of its location through this association. This
association is important for the Janus object model, but
not for the Janus SOM.

Ordnance objects are associated with weapon system
objects. The weapon system fires or launches the
ordnance. One could argue that this relationship is an
interaction rather than an association. It is a
momentary relationship as opposed to a lasting
relationship. However, the relationship between

ordnance and the weapon system is a usage
relationship characterized by the HLA OMT
Extensions Reference, Version 1.0, as an association
rather than an interaction.

3.7 Object Model Metadata
The object model metadata table is straight-forward
and requires only research into the back-ground of the
Janus model.

4.0 ISSUES
Two issues have made the construction of the Janus
SOM conceptually challenging. First, there was some
question about the classification of an event which
occurs when an object detects anther object. On the
one hand, detection involves the interaction of two
objects, and therefore could be classified as an HLA
interaction. On the other hand, there is no explicit
action taken by one object directed toward another.
The searching object is simply scanning a field of
search hoping to detect opposing force objects. Each
time cycle the scanning object reviews a potential
target list to determine if one or more potential targets
are now observed. Although the scanning object does
query the potential targets for their contrast and
dimension data, this is transparent to the Janus user.
Furthermore there is no potential to change the
attributes of the potential target. These values are
simply used in the target acquisition algorithm to
determine if a detection occurs. Target
acquisition/detection events are critical to any Janus
scenario so this issue must be resolved. [1,8]

Secondly, atmospheric objects also impact on the
detection event. It is thus possible for three or more
objects to interact in Janus. A searching object may
check a potential target that is shielded by one or more
cloud objects. The cloud objects each attenuate the
contrast attribute of the potential target as the
searching object attempts to determine if it will make a
detection. [1,8] This type of event is awkward to
portray in the SOM.

5.0 PRELIMINARY RESULTS AND
REMAINING WORK
In this section we describe the status of the HLA SOM
tables and the remaining work to comply with the
HLA federate rules.

5.1 SOM Tables
Although the SOM tables are 90% complete, we
estimate that the Janus SOM is only 50% complete
after 64 man-hours devoted strictly to production of
the SOM (see table 5 for more detailed depiction of

SOM status). Much of our time was spent reviewing
the HLA References after producing the initial Janus
object model to ensure the SOM complies with HLA
requirements and meets with the Army’s requirement
for its use in analysis and training. For example, it
was during this phase that we eliminated the terrain in
the object class structure table. We excluded terrain
from the SOM representation because each federate
participating in a federation will have its own
representation of the terrain so there is no need to
publish/subscribe to this object class. We expect to
spend another 60-70 man-hours on the project before a
complete Janus SOM is produced.

Component Completion
Status

Object Class Structure Table 95%
Attribute/Parameter Table 70%
Interaction Table 70%
SOM Lexicon 80%
Component Table 90%
Association Table 80%
SOM Metadata 80%
 Table 5. Current Status (6 January 1997)*

*Note that these completion percentages reflect the
amount of time necessary to complete the table in
terms of research to verify correct data and
refinement of existing data in the tables as well as
amount of the table completed.

We are using the Aegis Research Object Model
Development Tool (OMDT) to document the Janus
SOM. This Windows95 based OMDT is a substantial
improvement over our initial spreadsheet
documentation. The OMDT links the OMT tables
reducing errors and speeding model documentation.
We found no inconsistencies in the completion of the
OMT tables; however, we did encounter some minor
difficulties with the command interface. We expect
that these difficulties will be corrected in the final
release of the software.

5.2 Work Remaining
Work remaining on the SOM will consist primarily of
refining the tables produced thus far and identifying
data that we have overlooked. Janus is a highly
detailed simulation capable of representing hundreds
of different types of entities and will require
significant verification to insure that all facets and
capabilities are captured in the SOM. Janus software
developers at TRAC-WSMR will review in detail the
content of the Janus SOM. JLINK developers at

TRAC-MTRY will review the Janus SOM to assess its
suitability to support a distributed Janus only
federation.

In terms of the HLA rules for simulation federates, we
have described the effort to comply with HLA Rule 6.
The subsequent implementation work will satisfy the
remaining four rules. (The six HLA federate rules are
listed below.) Distributed Janus developers at TRAC-
WSMR and TRAC-MTRY will review the Janus SOM
to identify potential model related implementation
difficulties not anticipated by the SOM developers.

6. Federates shall have an HLA Simulation Object
Model (SOM), documented in accordance with
the HLA Object Model Template (OMT).
7. Federates shall be able to update and/or reflect
any attributes of objects in their SOM and send
and/or receive SOM object interactions externally,
as specified in their SOM.
8. Federates shall be able to transfer and/or accept
ownership of attributes dynamically during a
federation execution, as specified in their SOM.
9. Federates shall be able to vary the conditions
(e.g., thresholds) under which they provide
updates of attributes of objects, as specified in
their SOM.
10. Federates shall be able to manage local time in
a way which will allow them to coordinate data
exchange with other members of a federation.

6.0 CONCLUSION
Our research indicates that Janus can meet HLA
standards. Legacy model proponent organizations may
benefit from detailed review of their simulations for
possible compliance with HLA.

We recommend construction of a detailed general
object model for legacy simulations implemented in
procedural languages as an intermediate step in SOM
development. We believe it is important to form a
conceptual model of the legacy simulation in a general
object oriented representation prior to mapping the
simulation into an HLA SOM. We found it much
easier to extract the HLA SOM from the conceptual
model. We feel that the direct approach entails more
risk that essential aspects of the legacy simulation will
be overlooked. The object oriented representation of
the conceptual model also documents the legacy
simulation. We also found that by changing the
structure of the class hierarchy, more than one useful
conceptual model could be created to describe a legacy
simulation.

We would not want to attempt to create an HLA
compliant SOM without model development tools. The
AEgis Research OMDT has greatly simplified SOM
documentation and reduced the risk of errors. Other
organizations with large complex legacy simulations
would likely benefit from the ability to create
conceptual models with commercial graphical object
modeling tools and subsequently importing these
models into an HLA object model development tool.

Significant work remains to complete and validate the
Janus SOM. A detailed and complex model like Janus
requires many man-hours to identify the components
of the OMT tables, construct the tables, and finally
refine and verify the data to arrive at an acceptable
SOM which satisfies HLA Rule 6. The final phase of
Janus SOM completion will include: continued
refinement; capturing of objects, parameters, and
interactions that were overlooked previously; and
verification of the model.

7.0 REFERENCES

[1] The Janus 3.X/VMS Model Software
Programmer’s Manual, Contract No. DABT65-92-D-
0002, November 1993.

[2] HLA OMT Reference Version 1.0, dated 15 Aug
96.

[3] HLA OMT Extensions Reference Version 1.0,
dated 20 Aug 96.

[4] The Janus Version 6.3 Software User’s Manual,
U.S. Army Simulation, Training, and Instrumentation
Command, Orlando, FL, 1995.

[5] The Janus Version 6.0 Database Manager’s
Manual, U.S. Army Simulation, Training, and
Instrumentation Command, Orlando, FL, 1995.

[6] Larimer, Larry R., Master of Science Thesis,
Operations Research, Building a Simulation
Object Model of a Legacy Simulation (Draft), Naval
Postgraduate School.

[7] OMDT User’s Guide, Alpha 1.0, Developed by
Aegis Research and Sponsored by The Defense
Modeling and Simulation Office. 1996.

[8] Parish, Randall M. and Alvin D. Kellner , Target
Acquisition in Janus Army, U.S. Army TRADOC
Analysis Command, White Sands Missile Range, NM,
Oct 92

[9] "JLINK - A Distributed Interactive Janus" by
Major Maria C. Pate and Major Glen G. Roussos.
http://131.120.57.3/jlink/JLINKphlanxArticle.html

 8.0 ABOUT THE AUTHORS

Dr. Arnold H. Buss is an Adjunct Professor of
Operations Research at the Naval Postgraduate
School. He received a B.A. in Psychology from
Rutgers University, and M.S. in Systems and
Industrial Engineering from the University of Arizona,
and a Ph. D. in Operations Research from Cornell
University. His research interests include simulation
modeling and object-oriented software design. He is a
member of INFORMS, MORS, and POMS.

Major Leroy A. Jackson is an army artillery officer
with 19 years of enlisted and commissioned service.
He graduated with a B.A. in Mathematics from
Cameron University in 1990 and with an M.S. in
Operations Research from the Naval Postgraduate
School in 1995. He is currently assigned as an
operations research analyst at the U.S. Army Training
and Doctrine Command (TRADOC) Analysis Center
(TRAC) Research Activities in Monterey, California
and he continues his graduate studies at the Naval
Postgraduate School.

Captain Larry R. Larimer is an army infantry officer
with 14 years of enlisted and commissioned service.
He graduated with a B.S. degree in Organizational
Leadership from the United States Military Academy
in 1986 and is currently pursuing a graduate degree
in Operations Research at the Naval Postgraduate
School. Captain Larimer’s thesis research is the basis
for this paper.

Annex A, Figure 2. Database Identified Platform Class Attributes

Direct Fire Indirect Fire

Weapon
System

Missile Ballistic
Projectile

Direct Fire

Rocket Projectile

Indirect Fire

Ordinance
Superclass

Elevation Roads Buildings/
Man-Made

Bodies of
Water

Vegetation

Terrain
Superclass

Type 1
Minefield

Type 2
Minefield

Minefield Abatis Crater Tank
Ditch

Natural
Obstacle

Smoke
Pot

Barrier
Superclass

Dust Cloud Smoke
Cloud

Fog

Atmosphere
Superclass

Thermal
(Infared)

Optical
(Visual)

Radar

Sensor
Superclass

Figure 2. Database Identified Platform Class Attributes

Annex B Table 3, Database Identified Platform Class Attributes

Database
System Number
Name
Max Road Speed
Max Visibility
Weapon Range
Sensor Height
Crew Size
Element Space
Chem Transmit Factor
Graphic Symbol
Class Symbol
Host Capacity
Functionality
Laser Designator
Mine Disperse
Engineer Type
Firing Category
Flyer Category
Logistics Type
Movement Type
Radar Type
Smoke Dispersion
Surveillance Type
Swim Type
Weights/Volume
Normal Inclusive Weight
Normal Full Volume
Additional Weight
Additional Volume
Physical/Thermal Signat
Detection Data
Length
Width
Height
Sensor Type
Primary
Alternate
Defilade
Pop-up
BCIS Type
BCIS Function

Optical/Thermal Contrast
Optical Contrast
Thermal Contrast
Exposed
Defilade
Mine Vulnerability
Track Width
Belly Width
Total Magnetic Shadow
POL Data
Fuel Type
Tank Size
Consump, Stationary
Consump, Moving
Fuel Carrier
Smoke Grenade Data
Num Smk Gen Volleys
Weapons and Ordnance
Ord number
Relative
Absolute
Weapons/Ord Name
Basic Load
Upload Time
Weapon to use
Weapon Selection
Number
Name
Weapon 1
Range
Weapon 2
Firing Priority
Vulnerability to ARTY
Exposed
Protected

Table 3, Database Identified Platform Class Attributes

